Gravitational Potential Energy near Earth’s surface

Gravitational force (weight) always points down, \(F = -mg \)

\[\Delta U = -W_c = - \int_{r_0}^{r_f} (-mg) \cdot \frac{dr}{r} \]

\[= mg \cdot \Delta r = mg \Delta y \]

where \(y \)-axis is vertical, and \(y = 0 \) is arbitrary, wherever convenient.

\(U = mgh \) is the P.E. for a mass at elevation \(h \) above \(y = 0 \).

Elastic Potential Energy

A spring stores potential energy when compressed or stretched, and releases it when it returns to equilibrium. For a mass on a spring moving in the \(x \)-direction:

\[\Delta U = - \int_{x_0}^{x_f} (-kx) \cdot dx = \frac{1}{2} k (\Delta x)^2 \]

\[U = \frac{1}{2} kx^2 \] for \(x = 0 \) at equilibrium.

Gravitational Potential Energy of satellites and spaceships.

\[\Delta U = - \int_{r_0}^{r_f} \frac{GMm}{r^2} \cdot dr \]

\[= -GMm \left(\frac{1}{r_f} - \frac{1}{r_0} \right) \]

Choosing \(U = 0 \) at \(r_0 \rightarrow \infty \)

\[U = -GMm \]

where \(r \) is the distance from the center of mass of \(M \).

Kepler’s 3rd Law, \(T^2 \propto a^3 \)

Let’s us compare the periods or semi-major axes of satellites in different orbits. Energy Conservation tells us compare speeds at different points on the same orbit.

Let \(r_a \) = aphelion, \(v_a \) the speed at \(r_a \), \(r_p \) = perihelion, and \(v_p \) the speed at \(r_p \).

\[\frac{1}{2} m v_a^2 = \frac{GMm}{r_a} \]

\[\frac{1}{2} m v_p^2 - G \frac{mM}{r_p} \]

What minimum speed \(v_e \) is needed to escape the Earth’s gravity starting from its surface?