more examples with Moment of Inertia

Parallel Axis Theorem

\[I_{\parallel} = I_{cm} + Mx^2 \]

distance from \(cm \) to center of rotation

Tell's us how much an object resists rotational acceleration about an axis displaced from the \(cm \).

For \(2 \) objects rotating about a common axis

\[I_{\text{tot}} = I_1 + I_2 \]

e.g. thick ring

\[I_{\text{ring}} = I_{\text{disk 2}} - I_{\text{disk 1}} \]

\[= \frac{1}{2}m_2R_2^2 - \frac{1}{2}m_1R_1^2 \]

\[= \frac{1}{2} \pi \left(R_2^4 - R_1^4 \right) = \frac{1}{2} \pi \left(R_2^2 - R_1^2 \right) \left(R_2^2 + R_1^2 \right) = \frac{1}{2} m_{\text{ring}} \left(R_2^2 + R_1^2 \right) \]

Perpendicular Axis Theorem

\[I_z = I_x + I_y \]

Find the moment of inertia of a disk about an axis in the plane of the disk through its \(cm \).

A uniform rod rotating about one end.

\[I = \frac{1}{12}ML^2 + M \left(\frac{L}{2} \right)^2 \]

\[= \frac{1}{3}ML^2 \]

\[I = \int r^2 dm = \int_0^L r^2 \frac{M}{L} dr \]

\[= \frac{1}{3}L \int_0^L \frac{M}{L} \left(L - r \right) dr = \frac{1}{3}ML^2 \]

A disk rotating about a point on its edge.

\[I = \frac{1}{2}MR^2 + MR^2 = \frac{3}{2}MR^2 \]

\[I_{\text{ring}} + I_{\text{disk 1}} = I_{\text{disk 2}} \]

\[m_1 = \sigma \pi R_1^2, \quad m_2 = \sigma \pi R_2^2, \quad m_{\text{ring}} = m_2 - m_1 \]

A disk rotating about a point on its edge.

\[I_x = I_y = \frac{1}{4}MR^2 \]

\[\frac{1}{2}MR^2 = I_x + I_y \]

\[= 2I_x \]

\[I_x = I_y \text{ by symmetry} \]

\[I_z = I_{\text{ring}} \text{ for disk} \]

about the axis \(\perp \) to the plane of the disk.