Objective: To gain basic knowledge in the fields of radiation and modern optics, including ray optics and wave optics, fiber optics and holography, and some selected topics in lasers and nonlinear optics.

Instructor: Zhigang Chen

Office: Thornton Hall 526, Phone: 338-3876, Email: zhigang@sfsu.edu
Office hours: M 3-4pm (Please feel free to drop in or make an appointment at any time).

Meeting Time and Place:
TTH 1235 – 1350, TH 425

Textbook:
Primary reference:
Introduction to Optics, 3rd edition, by Pedrotti³ (Prentice-Hall, 2007)

Other references (optional):
Optics, 4th edition, by Hecht (Addison-Wesley, 2002)
Fundamentals of Photonics, by Saleh and Teich (John Wiley, 1991)

Prerequisites:
PHYS 230 and 240 (PHYS 320, 360, 385 recommended)

Grading:
Homework 20%
Presentation 20%
Midterm Exam 30%
Final Exam 30%

Homework:
Homework is an important part of learning. Weekly homework problems will be assigned before the midterm exam, and need to be turned in before the due date. (No late submission will be accepted). You should work independently, although discussion with others in general is allowed. What you submit must be your own work.

Presentation:
Modern optics is a very broad and active field. You are required to give a brief oral presentation in class on a selected topic in optics based on your reading. The purpose of this requirement is to give you experience in independent literature research and in presenting your work to scientific or public community. (A paper associated with your presentation is encouraged).
PHYS 480

Course Schedule

Week 1 (1/25, 27)
 Introduction: A brief history of optics

Weeks 2-5 (2/1-2/22)
 Geometric Optics (Ray Optics)
 Reflection, Refraction (review)
 Reflection and Refraction at a Spherical Surface, Mirrors
 Thin Lenses, Combination of Thin Lenses
 Optical fibers and Optical Instruments
 Matrix Optics

Weeks 6-9 (3/1-3/22)
 Physical Optics (Wave Optics)
 Waves and Superposition of Waves
 Interference: Two-beam interference
 Types of Interference and Interference Fringes
 Optical Interferometry and Multibeam Interference
 Polarization
 Electromagnetic Radiation
 Birefringence and Double Refraction
 Fraunhofer Diffraction: Single Slit, Double Slits
 Fresnel Diffraction
 The Fresnel Equations
 (TIR, Snells, Malus, Brewster’s laws, Evanescent Waves, etc)

Exam 1 (take-home)
Week 10 (3/27) Spring break

Week 11 (4/5, 7) Presentation/Project
 Double rainbow, Babinet’s Principle, Airy beams, Talbot effect, Poisson’ spot…

Weeks 12-15 (4/12 – 5/3) Modern Optics (selected topics)
 Introduction to Laser Physics
 Laser Types, Laser Characteristics
 Basic of Coherence, Coherent and Incoherent Light Sources
 Introduction to Fourier Optics
 Holography
 Guided-Wave Optics
 Photonic crystals
 Introduction to Nonlinear Optics

Week 16 (5/10, 12) Presentation/Project on selected topics on modern optics
 Demonstrations, Laser Tour in the Department

Final Exam

Students with disabilities who need reasonable accommodations are encouraged to let the instructor know. The Disability Programs and Resource Center is available to facilitate the reasonable accommodations process. The DPRC, located in SSB 110, can be reached by telephone at 338-2472 (voice/TTY) or by e-mail at dprc@sfsu.edu. Special accommodations will be provided only with a formal request letter from DPRC